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1.0 INTRODUCTION 
TOARC, Walker Industries Inc., and other collaborators in Ontario’s aggregates industry have been in a 
unique position to support innovative research aimed at discovering practical techniques environmental 
managers may use to produce high-quality habitat and support biodiversity consistent with late-
successional hardwood forests. We created the Rapid Ecological Restoration for Aggregate Sites (RERAS) 
study to explore hypotheses that can be experimentally tested and applied to industrial practices. This 
4-year study aims at closing the knowledge gaps that make hardwood forest restoration in southern 
Ontario so slow and uncertain to succeed. 

The RERAS project seeks to understand the limits and opportunities that face land managers trying to 

achieve some of the ecological functions and values associated with mature, well-developed ecosystems 

such as hardwood forests, but within environments undergoing rehabilitation, afforestation, or other 

management aimed at offsetting or recovering from environmental degradation. More specifically, we 

seek to learn whether a “transplant surgery” paradigm for ecosystems may have value in industrial 

practices. We hypothesized that, in general, valued properties of ecosystems that take a long time to 

mature may be encouraged to develop within recently disturbed environments provided that managers 

treat the desired outcome of succession like a vital organ, not a machine to be easily built or repaired.  

Principles of successful organ transplantation in animals include: 

• Knowledge-based matching of recipients to donors 

• Careful respect for the physiological limits of systems being operated upon 

• Strategic after-care based on reducing stress faced by transplants from hostile environmental 

factors (i.e. differences between conditions at hand versus those previously adapted to) 

1.1 THE HYPOTHESIS  
Our hypothesis predicts that equivalents for each of these principles hold for achieving success in the 

direct translocation of a bulk “ecosystem” – an integrated whole rather than a collection of parts – from 

late-successional environments to earlier-stage ones. When successful – due to good site matching, 

strategic timing and placement of operations, and appropriate after-care by editing fine-scale habitat 

conditions (“microhabitat”) to more closely the donor environment – ecosystem translocation may offer 

unprecedented hope for effectively accelerating succession by bypassing intermediate stages. This may 

produce valued co-benefits of late-stage ecosystems including habitat for distinctive biodiversity. Our 

experimental work tests many specific predictions of this general hypothesis, within a system of heritage 

hardwood forest and surrounding former-forest, previously managed for agriculture and aggregates 

development but now targeted for rehabilitation or afforestation initiatives. 

1.2 THE VALUE IN “BULK” TRANSLOCATION OF LATE-STAGE ECOSYSTEMS  
Industrial processes for extracting natural resources must sometimes strip and reuse ecosystem 

products with high ecological value arising from centuries of spontaneous succession. This value often 

goes unrealized, such as stockpiling practices that unintentionally terminate living elements in soils. 

Where true, changing management strategies to utilize under-valued materials through direct 

translocation to appropriate recipient environments may be conducive to efficient resource recycling 

and conservation. Potential benefits for managers adopting ecosystem translocation projects hinge on 

how well the inherent biological structures (e.g. microbial networks in soil; plant composition) can resist 

and recover from stressors imposed by:  
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i) Excavation and translocation itself;  

ii) The new physical environment; and 

iii) The new suite of species interacting with the translocated organisms.  

The intent of our experimental design was to narrow down the field of possibilities regarding the 

outcome of relocating bulk quantities (see Figure 1) of mature forest topsoil, and to determine how 

biodiversity present in this “living mulch” (hereafter “LM”) responds to different qualities of:  

i) the potential recipient environments, such as management history and relative stage of 

ecosystem development; and  

ii) microhabitat modifications, such as creation of woody debris (hereafter “WD”) or shading 

structures (hereafter “SS”).  

 

 

Figure 1: Example of operators extracting Living Mulch (LM) from a donor site then redistributing it at a recipient 
site 

This report reflects years one and two, with full analysis set to occur over the next several months, 

meaning the conclusions and applications suggested here are tentative. 

1.3 SUCCESSION THEORY  
The heart of succession theory suggests organisms are constantly dispersing, causing open ground or 

recently disturbed soils to eventually become colonized by pioneer species (including microbes, plants 

and animals), many of which share similar functional traits related to survival and reproduction (“life-

history”) including stress tolerance, rapid growth and reproduction, and long-distance dispersal. Pioneer 

organisms inevitably change the environments they grow in, however, in ways that reduce the stressors 

experienced by subsequent colonists, including through contributing to soil formation and ground cover 

by a variety of organic structures (living and dead). The resultant patchiness of resources and stressors 

(physical, chemical, and biotic) in the environment tends to favour establishment and growth of 

different species with different traits compared to the pioneer wave, including more productive growth, 

increased competitiveness and, eventually, woody growth and higher tolerance of shade when young.  

Not all environments produce soils capable of supporting tall trees, or remain disturbance-free long 

enough for such growth to occur, but in landscapes where such broader factors are suitable, woody 

stands of trees with pioneer-like traits tend to eventually establish at high density (a successional stage, 

or sere, referred to as “stand initiation”). The shading and other environments alterations resulting from 
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such stands growing quickly creates microhabitats unlike any that came before, and most residing 

vegetation cannot survive (reaching a peak at a stage called “stem exclusion”, when there is minimal 

light, and biodiversity, on the floor of the forest).   

Pioneer trees are naturally short-lived, for trees, and the mortality of this initial cohort is sped along by 

storms, forest usage and other factors, which help transition the developing forest into a third stage, 

“understorey re-initiation.” During this sere, growing gaps in the canopy alongside heterogeneous light 

and litter conditions on the ground support emergence of new, diverse communities of plants and many 

other organisms. These include forest specialist species, adapted to either tolerate high shade or 

capitalize on spatial patches or time windows featuring mixed or moderate shade (e.g. spring ephemeral 

wildflowers, such as wild leek).  

1.3.1 FIVE STAGES OF SUCCESSION  
Within forested regions, disturbed landscapes such as farmland, pits and quarries usually regenerate 

forest cover over time. Although the processes involved in this are continuous and variable, ecologists 

typically recognize a pattern of transitional stages that follow each other in a predictable series (each 

stage is thus a “sere”), as discussed above. Here, we identified five distinct seres (S1-S5) relevant to the 

development of Niagara Escarpment forests. S1 is primary succession, or ecosystem development from 

a position of no vegetation and no soil. S2 is stand initiation, when ground conditions have evolved to 

support a moderate to high density of woody species but these have yet to produce a canopy layer. S3 is 

stem exclusion, when woody species grow tall and exclude most other resident vegetation through 

impacts on light and litter-layer conditions. S4 is understorey re-initiation, when gaps in the canopy 

form due to weather disturbances, natural tree death, or management, and a diversity of new colonists 

with adaptations to mixed shade and woody debris microhabitats begins to establish. S5 is old-growth 

or “climax community”, when shade levels continue to shift and emerging forest floor microhabitats – 

including complex woody debris accumulations, rich litter layers, and pit-mound landforms – encourage 

persistence of a diverse assemblage of well-adapted species, i.e. the characteristic biotic communities of 

Ontario’s primary hardwood forests at maturity. The diagram below illustrates natural succession 

occurring over hundreds of years, with superimposed labels corresponding to the stage studied here.  

 

Figure 2: A diagram illustrating the natural stages of primary succession  

S1 S2 S3 S4 S5 
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1.3.2 BENEFITS TO LAND MANGERS  
If the ecosystem transplantation hypothesis is valid, applying it within industry will help managers of 
recently disturbed environments produce substantial biodiversity, functions and other valued properties 
of long-established ecosystems (i.e. old growth seres) over a shorter timeframe than required for 
natural regeneration. Ecosystems rich in late-successional features are potential donors of such recently 
disturbed recipient sites, especially in areas planned for land-use changes.  

For example, some areas licensed for aggregates development support very mature sugar maple stands 

with rich native understorey communities and soil resources that may provide an exceptional 

“ecosystem donation” (prior to scheduled forest clearance and extraction of underlying aggregates, and 

as an alternative to long stockpiling of the material for later use as general “fill”). Potential recipient 

landscapes exist in surrounding areas that were originally forest but then farmed or mined, and are 

presently undergoing management to meet site rehabilitation or afforestation goals. 

2.0 EXPERIMENTAL DESIGN AND METHODS OVERVIEW 
The research timeline, funded over four (4) years, required the first year to properly install the 
experiment; a second year for relevant ecological processes to stabilize and produce potentially reliable 
patterns; a third year, to intensively collect data from response variables describing states of the 
experimental system; and a fourth year, to collect follow-up data and interpret all results. By evaluating 
which specific hypotheses best predicted the observed responses, the analysis produced in year 4 will 
generate both theoretical conclusions and best-practice recommendations. 

We designed a field experiment to test three (3) fundamental hypotheses: 

i) Direct translocation of bulk LM from an old-growth donor ecosystem to more recently 
disturbed environments promotes the development of ecological functions and 
structures typical of the donor forest (e.g. species composition of understorey plants) 
 

ii) The degree to which LM application produces a similar ecosystem to the donor forest 
depends on the extent to which recipient environments are engineered to provide 
ground-layer habitat conditions that are broadly similar to the donor environment (e.g. 
artificial shade structures)   
 

iii) The degree to which LM application produces a similar ecosystem to the donor forest 
depends on whether succession at recipient locations has already produced habitat 
conditions similar to the donor forest (e.g. a late-sere recipient location such as a 
mature tree plantation may respond more positively than a recent extraction site) 

2.1 DONOR FOREST AND RECIPIENT SITES 
Experimental manipulations began in October 2017 at field locations near Duntroon, Ontario, with 

monitoring and analysis required through 2019-2020. Areas licensed for extraction in Walker 

Aggregates’ Duntroon quarry provided us with an exemplary sugar maple tract in this now-uncommon 

“old growth” class, to serve as the LM donor forest (D+) in our experiment. We expected that recipient 

environments at earlier stages of development would likely differ in their responsiveness to LM 

translocation and microhabitat modifications, depending upon which specific sere was treated. We 

therefore sought to include in our experiment recipient environments spanning a range of earlier seres 

(referred to as S1-S5). 
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2.2 LOCATIONS OF RECIPIENT SERES 
We selected four (4) locations within six (6) km of D+, each of which represented a different stage 

(“sere”) of forest development. S1 is a former gravel pit undergoing spontaneous primary succession for 

the past 25 years. S2 is a former farm field afforested with diverse native hardwoods to help offset 

biodiversity impacts of a new quarry, planted in 2015-2016. S3 is a former field afforested with conifers 

ca. 1985. S4 has a similar history to S3 but with planting date ca. 1940. S5 is a parcel of old growth forest 

adjacent to D+ but outside the limits of the new extraction. S5 will help determine the extent to which 

outcomes of LM-translocation are attributable to shock from excavation or transport rather than stress 

imposed by new environmental conditions. Table 1, Figure 3, and Figure 4 (below) present additional 

information about D+ and seres S1-S5. 

Table 1: Niagara Escarpment field locations near Duntroon, Ontario, utilized in the living mulch (LM) and 
microhabitat experiment 

Code Location name Location type Site description Area (ha) UTM (Zone 17T)

D+ LM Donor forest Primary Acer 

saccharum  stand

Primary upland (c. 450 m a.s.l.) Acer saccharum  forest, with 

sections requiring clearing prior to licensed aggregate 

extraction; two such patches (N, S) were partially excavated to 

extract bulk LM (i.e. forest floor litter and topsoil layers) for 

immediate relocation to recipient seres in Oct. 2017

6.0 559709.00 m E

4915535.00 m N

S1 LM Recipient Sere 1: 

Primary succession

Disused gravel pit Site of limestone sand and gravel extraction (c. 1940-1990) 

located < 7 km NE of D+; undergoing spontaneous succession, 

having never been rehabilitated

1.5 565109.00 m E

4919943.00 m N

S2 LM Recipient Sere 2: 

Afforestation at stand-

initiation

Old field afforested 

in 2015

Native deciduous and coniferous trees planted on former 

farmland (< 0.5 km N of D+) to help offset clearing of D+; field 

underwent spontaneous succession for 5 years prior to planting 

with 20 tree species, which was followed by 2 years of 

irrigation and weed-control

6.0 559640.00 m E

4915723.00 m N

S3 LM Recipient Sere 3: 

Afforestation at stem-

exclusion

Old field afforested 

c. 1985

Pinus strobus + Picea glauca  plantation, established along 

edges and patches of the licensed extraction site (< 1 km NE of 

D+) that will not be extracted, and which required soil 

stabilization; not managed for wood production

1.5 559965.00 m E

4916232.00 m N

S4 LM Recipient Sere 4: 

Afforestation at 

understorey reinitiation

Old field afforested 

c. 1940

Pinus resinosa + Picea glauca  plantation, established on former 

farmland < 4 km E of D+, to help stabilize soil; not managed for 

wood production

1.3 563981.00 m E

4916209.00 m N

S5 LM Recipient Sere 5: 

Old-growth forest

Primary Acer 

saccharum  stand

Mature forest that is contiguous with and identical to D+, but 

outside the planned extraction zone (<0.5 km W of D+)

4.5 559439.37 m E

4915438.26 m N

Table 1: Niagara Escarpment field locations near Duntroon, Ontario, utilized in the living mulch (LM) and microhabitat translocation experiment
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Figure 3: Overhead satellite imagery of the donor forest (D+) and recipient seres (S1-S5) incorporated into the living mulch and microhabitat 

translocation experiment (Duntroon, ON, Canada). Produced using Google Maps. 
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Figure  4: Donor (D+) and recipient seres (S1-S5) incorporated in the living mulch and microhabitat translocation experiment (Duntroon, ON Canada) 
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2.2.1 RECIPIENT SITES IN COMPARISON TO SUCCESSIONAL STAGES 
Table 2 below compares each of the selected sere recipient locations to the successional stages of an old 

growth forest: 

Table 2: Similarities of the S1-S5 locations to natural stages of succession  

Table 2: Similarities of S1-S5 locations to natural stages of succession  

Code Location Type Successional Stage  Description 
Area 
(ha) 

S1  Disused gravel pit Stage 1 - Primary succession Ecosystem development from a position of 
no vegetation and no soil 
  1.5  

S2  Old field afforested in       
2015 

Stage 2 - Stand initiation  Ground conditions have evolved to support a 
moderate to high density of woody species 
  6 

S3 Old field afforested in c. 
1985 

Stage 3 - Stem exclusion Woody species grow tall and exclude most 
other resident vegetation through impacts 
on light and litter-layer conditions 
  1.5 

S4 Old field afforested c. 
1940 

Stage 4 - Understorey re-initiation Gaps in the canopy form due to weather 
disturbance, natural tree death, or 
management, and a diversity of new 
colonists with adaptations to mixed shade 
and woody debris microhabitats begins to 
establish 
  1.3 

S5 Primary sugar maple (Acer 
saccharum) stand 

Stage 5 - Old growth/”Climax 
Community” 

Litter, woody debris and shade levels 
continue to shift and the best-adapted 
species produce the characteristic biotic 
communities of Ontario’s primary hardwood 
forests at maturity 4.5 

 

2.3 APPLYING LIVING MULCH 
We began installation of the experiment at the end of October 2017 after most vegetation had entered 

states of dormancy for winter, but before winter weather could interfere with operations. The work 

consisted of progressively extracting LM from selected zones within the donor site using light excavation 

equipment and transporting truckloads of the material to recipient blocks within areas that included 

small natural clearings at S1-S5 on the same day as extraction (see Figure 5).  

The excavated LM included forest floor organic litter layers - leaf litter, fine woody debris, some larger 

coarse woody debris - plus the underlying 30 cm of topsoil (including inherent vegetation, propagules, 

micro-fauna and microbes). We recovered 1-3 m tall saplings with intact root balls during excavation 

and hand-planted them in the freshly deposited LM at recipient blocks (ca. 5-7 saplings per block).  
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. 

 

Figure 5: Living mulch translocation and woody debris in action (featuring Luke Elwood of Clearview Nursery)! 

2.4 RECIPIENT BLOCKS  
Each recipient block consisted of a 12.5 m x 10 m area which was cleared of major obstructions 

(including mowing and herbicide application for the dense herbaceous cover at S2) and then filled with a 

30 cm deep layer of LM (including working around existing trees). 
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Within S2, we established recipient blocks at five locations within a field previously planted with trees in 

2015 and at five locations within a field planted in 2016 (only the 2015-planted blocks were included in 

the analyses shared here). At each of the other recipient environments (S1, S3-S5), we installed five 

replicates of the LM recipient block. In total, we installed 30 LM recipient blocks, each corresponding to 

125 m2 of ground area (see Figure 6). 

The experimental design subdivided each of the LM recipient blocks into four equal quadrants (6.25 m x 

5 m) to test how outcomes of LM deposition depend on the creation of additional microhabitat 

structures consistent with the donor forest. In one quadrant per recipient block, we did not impose any 

additional changes after depositing the LM; we refer to this level of the translocation treatment as +LM.  

 

Figure 6: Example 12.5 m x 10 m quadrant areas. The photograph on the left shows an area that researchers left 
“not treated” (NT) when applying LM nearby (i.e. the photo on the right). Operators cleared the treated area of 
major obstructions then deposited and evenly distributed a 30 cm deep layer of LM, working around trees. 

2.5 CREATION OF FOREST MICROHABITATS (“AFTERCARE”) AT RECIPIENT BLOCKS 
Previous studies indicate many woodland species require particular habitat conditions that are unlikely 

to be available at some recipient locations, such as ample shade to protect forest wildflowers from 

potentially fatal high-intensity sunlight. Early seres, in particular may impose severe stress upon 

translocated forest organisms, necessitating means for providing refuge from predominant stressors. 

The design of the five translocation treatment levels (including +LM and NT, described above) tests the 

efficacy of different feasible methods for reducing environmental stress, by following-up LM 

translocation with installation of microhabitat features similar in function (if not aesthetics) to refuges in 

the donor forest. Required “aftercare” may include erecting shading agents able to produce a diversity 

of low-light environments, and/or increasing the abundance of coarse woody debris. 

2.5.1 INSTALLATION OF WOODY DEBRIS 
To the remaining three quadrants in each block, we introduced approximately 10-15 m3

 of additional 

woody debris (hereafter “WD”) which we had extracted from D+ in the spring following LM 

translocation – mainly as fallen trunks, limbs and old stumps spanning a range of sizes and states of 

decomposition. We distributed the WD sporadically throughout each area to create small piles and 

other structures resembling natural woody debris formations in D+ (see Figure 7). In spontaneous old-

growth forests, such formations provide valuable physical variability to several ground-layer 

environmental conditions crucial to plants and soil organisms, including light intensity, heat, humidity, 
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and biochemical products of wood decomposition. The second quadrant areas in each recipient block 

received no additional changes after treatment with additional WD; we refer to this level as +LM+WD.  

 

 

Figure 7: Example quadrant plots that received woody debris (WD) applications 

2.5.2 INSTALLATION OF SHRUB CLUSTERS  
Within the third quadrant of each LM block (after addition of the extra WD), we installed the first of two 

habitat modifications aimed explicitly at increasing ground-level shading: planting a shrub cluster 

(hereafter “SC”). This consisted of six dogwood saplings (Swida alternifolia), each 1 m tall, planted in a 

circular formation approximately 1.5 m in diameter. Alternate-leaved dogwood is a quick-growing 

native species, hardy to a range of light conditions, and a common component of local hardwood forests 

at developmental stages ranging from understorey re-initiation through old-growth. The woody growth 

can vary from tall shrubs (1-2 m) to small trees (4+ m), contributing to ground-shading and facilitating 

shade-dependent biodiversity (see Figure 8). The after-care principle of the transplant hypothesis 

predicts that if shading and other SC impacts increase local environmental similarity to D+, more typical 

forest species from the LM will establish near installed SCs. This treatment level is named +LM+WD+SC.  

 

Figure 8: Example of quadrants that received a cluster of six saplings of the shrub/small tree Swida alternifolia, or 
alternate-leaved dogwood 
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2.5.3 INSTALLATION OF SHADE SHELTERS 
Given uncertainties regarding the amount of shade to be expected from the planted dogwoods as well 

as potential negative impacts on LM biodiversity (e.g. due to competition), we established alternative, 

non-living shading agents at the two seres with no existing tree canopy (S1 and S2). This second type of 

environmental modification required constructing artificial shade shelters (SS) within the remaining 

quadrant of each LM recipient that had received extra (treatment level: +LM+WD+SS; see Figure 9). 

Contractors built each SS using four peeled cedar posts (12 cm diameter), installed to a height of 1.8 m 

in the corners of a 4 m x 4 m area near the centre of each designated quadrant. They attached, across 

the tops of the posts, a removable tarp made of black horticultural shade-cloth manufactured to reduce 

incident solar radiation by 70%. Application of this treatment level requires extending the tarps in early 

summer but removing them in late autumn, each year or the study, in synchrony with canopy leaf-out 

and shedding in D+.  

  

Figure 9: Example of installed shade shelters (SS) both in terms of the quadrant of ground sampled beneath their 
cover, and details of the structures themselves 

2.5.4 RECIPIENT BLOCKS NOT TREATED (CONTROL AREAS IN S1-S5) 
From a practical perspective, it would not be worth the work of translocating LM if the resultant 

ecosystem were no closer to D+ than areas left alone. We therefore established control locations, or 

areas not treated with LM but otherwise identical to the areas that were (treatment level: NT). 

Comparing the +LM quadrant of recipient blocks to nearby NT areas provides the crucial test that 

translocating LM can have a real impact on ecosystem development, e.g. by ruling out the possibility 

that desirable forest species observed in LM blocks are naturally abundant at the study sites, regardless 

of translocation. NT areas were located 5-10 m adjacent to each LM recipient block and monitored using 

all the same measures as for the treated areas. Table 3, below, presents a summary of the five levels of 

habitat refuge creation within the LM translocation experiment.
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Table 3: Five levels of habitat refuge creation within the Living Mulch relocation treatment 

Table 4: Five levels of habitat refuge creation within the Living Mulch relocation treatment 

Code Level Microhabitat treatment applied Test of effect 

NT 1. No Treatment None; refers to areas within recipient locations which did not 
receive relocated materials or other alterations. Sampling of NT 
was carried out 10-20 m adjacent to the installed Living Mulch 
Recipient (LMR) plots. 

- 

+LM 2. Addition of Living 
Mulch 

Living mulch (LM) was excavated in patches from donor forest 
floor (e.g. upper 30 cm of topsoil, propagule banks, litter layers, 
etc.) and relocated immediately in bulk to recipient locations (Oct. 
2017). Translocated materials were deposited evenly onto 12.5 m x 
10.0 m patches of ground, to a depth of 30 cm, working around 
existing trees but otherwise completely covered resident 
vegetation and surface features. One quadrant was designated 
"+LM" and assigned to receive no further alterations. 

+LM 

vs. 

NT 

+LM+WD 3. Addition of Living 
Mulch and Woody Debris 

Pieces of dead, fallen trees (e.g. stumps, trunks, limbs) varying in 
size and decomposition state were collected from the donor forest 
and relocated to the LMR plots (May 2018). Approximately 15 m3 
of woody debris (WD) was distributed evenly throughout the three 
remaining quadrants per plot. One quadrant was designated 
"+LM+WD" and assigned to receive no further alterations. 

+LM+WD 

vs. 

+LM 

+LM+WD+SC 4. Addition of Living 
Mulch, Woody Debris and 
Shrub Cluster 

Six Swida alternifolia nursery-stock saplings (1 m height) were 
planted in a 2 m diameter circular shrub cluster (SC) near the 
centre of one quadrant which had received WD, in each LMR plot 
(May 2018). 

+LM+WD+SC 

vs. 

+LM+WD 

+LM+WD+SS 5. Addition of Living 
Mulch, Woody Debris and 
Shade Shelter 

A shade shelter (SS) was constructed near the centre of the 
remaining quadrant which had received LM and WD, in each LMR 
plot at locations S1 and S2. Each structure consisted of cedar fence 
posts installed in the four corners of a 4 m x 4 m area, and cut to a 
height of 1.8 m. A sheet of black horticultural shade cloth, able to 
reduce peak incident solar radiation by 70%, was spread across the 
tops of the posts and used to cover the ground below (May 2018; 
tarps removed and reinstalled seasonally). 

+LM+WD+SS 

vs. 

+LM+WD 

 

*Abbreviations expanded: LM (living mulch); NT (not treated); WD (woody debris); SC (shrub cluster); SS (shade 

shelter) 
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2.6 AFTERCARE  
Mature trees are essential components of old-growth forests, but unfortunately, they are rarely able to 

survive transplantation. Their key role in shaping understorey habitat conditions and the potential 

absence of equivalent structures in recipient environments means that functionally replicating the 

missing microhabitat features should be a main consideration in both prescribing after-care and in 

selecting recipients initially. For example, an environment with some canopy closure or other strong 

shading elements, even if biologically distinct from the donor system, may offer better chances of 

success than any environment without such features. Saplings, shrubs, and smaller-stature trees which 

can be transplanted should be included, but with effort to excise and replant properly. 

Woody debris structures varying in size, species composition and decay status play multiple different 
roles providing habitat refuges for woodland organisms. Translocation after-care aimed at replicating 
such structures may reduce stress experienced by the LM application and promote establishment of 
more characteristic forest communities. Although considerable work is required, these and other 
specific predictions of the transplant hypothesis are straightforward to test.  

3.0 ANALYSIS 
To test how effectively LM translocation generates ecosystem properties typical of old spontaneous 

forests at recipient locations undergoing rehabilitation or afforestation, we first needed to identify:  

i) which properties of ecosystems would be most significant to investigate;  

ii) a suitable donor forest (hereafter “D+”) from which we could extract and utilize the 

“ecosystem” matrix of saplings, woody debris, organic litter and topsoil (“LM”); 

iii) “after-care” techniques for replicating donor forest microhabitats in a way that is both 

biologically effective and logistically feasible at industry scale; 

iv) recipient environments that are suitable for ecosystem transplantation trials. 

We are testing predictions that different interventions will produce different degrees of similarity to the 

ecosystem properties characterizing D+, and so the scope of ecosystem properties we choose to 

measure has major implications for what patterns we are capable of finding. One aim of our analysis will 

be to determine relationships among different response variables, including how well narrow subsets of 

responses may indicate the status the broader system. 

3.1 PLANT COMMUNITY ANALYSIS 
We have prioritized assessing the plant communities growing at the study locations as the best 

immediate indicators of ecosystem status by sample quadrat plots throughout the varying seres (see 

Figure 10).  

Plant community analysis include: 

• The total number of plant species 

• Plant taxonomic identities (e.g. family/genus/species) 

• Ground covered and predominant growth forms (e.g. moss/fern/forb/grass-family/woody 

vine/shrub/tree) 

• Biogeographic origins of the species (e.g. native or exotic),  

• Life-history strategies (e.g. opportunist vs. strong competitor)  

• Relative rates of change in many of these properties over time or space.  
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Figure 10: Examples of the small (0.25 m2) temporary sampling plots laid as frames in which to assess the species 
composition of the vegetation community -- each plot is traditionally referred to as a QUADRAT in the ecology 
literature. 

3.2 SOIL PHYSIO-CHEMISTRY ANALYSIS 
Comprehensive analysis of physical, chemical and biological features of both manipulated and resident 

soils is underway. To date, we have collected and stored more than 1000 strategic soil samples from 

different treatments and time points in the experiment, and have planned extensive analyses in 

collaboration with SGS Guelph, including quantification of soil pH, P, K, Mg, Ca, Zn, Mn, Cu, B, Fe, 

ammonium, nitrates and organic carbon. 

3.2.1. SOIL BIOLOGY AND “eDNA” TESTING  
Soils will also undergo biological analysis utilizing meta-genomic barcoding of environmental DNA, or 

“eDNA meta-barcoding”. This analysis isolates and amplifies tiny fragments of DNA present in soil and 

enables identification of microorganisms. We are exploring partnership with two young companies from 

the University of Guelph’s Barcode of Life Initiative: AgriSeqSolutions and Precision Biomonitoring. We 

are planning for initial genetic sequencing and analysis of soil fungal and bacterial communities over 

winter 2019-20, with insight into the biology of the late-2019 soils expected by spring 2020. 

3.3 DECOMPOSITIONAL RATES OF LEAF LITTER IN SOIL 
In fall 2018, we collected freshly fallen leaves within the donor forest, dried them, and portioned the 

material into several hundred 5.00-gram samples. We then transferred the weighted samples to 

custom-sewn nylon mesh pouches and buried these shallowly, in replicate clusters of 4, throughout D+ 

and S1-S5. The mesh size of the pouches allows the most common decomposition agents (bacteria, 

fungi, invertebrates) access to the dried leaf material but keeps the undecomposed leaf remnants intact 

so that, after a designated period, the samples may be retrieved, re-dried and re-weighted to determine 

how much of the sample decomposed per unit of time. We buried all litter pouches in early spring 2019 

and retrieved the first set of samples for analysis in late autumn 2019, with retrieval of remaining 

replicates planned for 2020.  

3.4 ECOSYSTEM THERMODYNAMICS  
Recent engineering innovations have enabled ecologists to begin studying potential indicators of 

broader ecosystem status (such as stress levels experienced, or current development stage) related to 

the thermal properties, including the proportion of incoming radiation that is used by organisms to do 
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work, which can be inferred from the amount of heat radiated from the system. Using high-resolution 

thermal cameras mounted to a remote-operated aerial vehicle, we have been repeatedly surveying 

thermal properties a subset of the treated areas (S1 and S2), in collaboration with colleagues in the 

University of Waterloo’s Engineering Department. One purpose is to help determine the potential use of 

this technology for monitoring the progress of ecological restoration, while another is to gain 

mechanistic insight into relationships between ecosystem structures and functions in our system, 

including thermo-regulatory properties pertinent to climate change resilience and adaptation.  

4.0 INTERIM RESULTS 
In our spring 2019 survey, we were able to examine communities including many spring ephemerals 

within D+ and assess whether there was evidence for the establishment of similar communities within 

treated and not-treated areas of S1-S5. We also observed, shortly after their emergence, many plants 

typically comprising the summer flora in the ground-layer, indicating analysis of the spring data would 

likely grant a fair preview of at least some of the structure of the later-season community as well.  

Throughout sampling of spring 2019 from May 15 through June 8, we identified every species of fern, 

herb, grass, vine, shrub and tree (plus commonly reoccurring moss families) within each of four 0.25 m2 

plots placed at random positions within each of the differently-treated quadrants in every LM recipient 

block. This added up to 60 small sampling plots per site where no shade shelters had been installed (S3-

S5), and 72 plots per site where they had been (S1-S2).  

At each sere we also sampled 60 plots within not-treated (NT) areas surrounding the treated areas, for a 

total of 500 sampling plots across all treatment levels (NT; +LM; +LM+WD; +LM+WD+SC; +LM+WD+SS). 

We characterized the plant community composition within the donor forest by assessing 160 sampling 

plots. These individual blocks are detailed in the following photos: S1-S2 (Figure 11), S3-S4 (Figure 12), 

and S5-D+ (Figure 13). 
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Figure 11: Not-treated (NT) areas (top) and LM-treated blocks (middle, with example close-up image of a 
community sample in bottom panel) in S1 and S2 recipient seres. 
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Figure 12: Not-treated (NT) areas (top) and LM-treated blocks (middle, with example close-up image of a 
community sample in bottom panel) in S2 and S3 recipient seres. 
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Figure 13: Not-treated (NT) areas (top) and LM-treated blocks (middle, with example close-up image of a 
community sample in bottom panel) in S5; images of D+, for comparison (not treated). 
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4.1 JACCARD INDEX TO CALCULATE COMPOSITIONAL SIMILARITY  
For each plot in S1-S5, we quantified its average similarity to the plots sampled within D+ using the 

Jaccard index, a mathematical tool also known as “Intersection over Union” which is used in many 

disciplines to compare pairs of sets with respect to the proportion of elements that shared between sets 

versus unique to one or the other.  

Statistical results of the Jaccard index are in the ‘Full Interim Report’. 

4.2 SUMMARY OF RESULTS FROM STATISICAL ANALYSES   
One of the most important results from the spring 2019 vegetation data is the close similarity between 

the D+ plant community and that which emerged in LM-treated areas of S5 (mature hardwood forest 

apparently equivalent to D+). The closeness suggests that the vegetation residing in the LM was not 

meaningfully impacted by the physical process of extracting, transporting and depositing the top layer of 

forest topsoil – likely because these steps were carried to completion in a short period of time (no 

stockpiling), and after most vegetation had entered winter dormancy (respecting physiology of the 

system). As such, departures from this pattern at other recipient locations must be due to the new 

environment, not the translocation process. Knowing this, the most useful lessons derived from 

vegetation patterns at the four earlier-stage LM recipient locations (S1-S4) are that:  

i) LM application without additional alterations to microhabitat features produces a 

doubling to tripling of species richness at the small-plot scale (i.e. per 0.25 m2), relative 

to untreated areas of recipient environments.  

 

ii) The plant communities varied with respect to how similar their species compositions are 

to those residing in the donor forest (D+), but at every recipient sere LM-treated areas 

shared significantly more species with D+ communities compared to untreated areas. 

 

iii) In most of the recipient seres, translocating additional coarse woody debris from D+ and 

using it to install microhabitat structures (designed to provide small-scale refuges with 

locally higher levels of shade, humidity, soil moisture and wood-decomposing 

organisms) produced a significant positive effect on the level of similarity to D+ 

expressed by the plant community.  

 

iv) Planting clusters of alternate-leaved dogwood shrubs as potential agents for shading the 

translocated LM has yet to exhibit any meaningful effects on the ground-layer 

vegetation.  

 

v) Constructing artificial shade shelters using cedar posts and horticultural shade cloth, by 

comparison, had a significant positive influence on the level of community similarity to 

D+ expressed by vegetation in affected areas of S2 (field afforested in 2015), and we 

saw a trend towards a similar influence in S1 (dry gravel pit undergoing spontaneous 

succession).  

 

vi) If the constructed shade shelters provide refuge to translocated D+ biodiversity, the full 

benefits of such provisioning would likely be more apparent in patterns demonstrated 
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by the late-season rather than early-season plant communities. The mechanisms of SS 

effects require further investigation but likely include both protecting shade-tolerant 

plants from high light intensity and producing unfavourable conditions for light-

favouring species that would otherwise outcompete translocated woodland species for 

space, nutrients or other resources.  

4.2.1 TESTING PREDICATIONS BY COMPARING OUTCOMES AMONG TREATMENT LEVELS  
We analyzed the set of average similarity for all plots sampled in spring 2019 at recipient seres. Using 

generalized linear model analysis, we also included random effects to account for potential 

autocorrelation among plots sampled within the same recipient block (or surrounding area), and made 

previously planned statistical contrasts between different, specific treatment pairs to test predictions.  

The test for the prediction that LM application would increase the similarity of S1 vegetative 

composition to that of D+, for example, is to determine if the average similarity for plots in LM-treated 

areas of S1 is statistically greater than the average similarity for NT plots in S1. To test the prediction 

that adding extra WD microhabitat structures would induce an even greater degree of similarity to D+, it 

is necessary to contrast average similarity in +LM+WD plots against average similarity in the +LM plots. 

Similarly, the +LM+WD treatment level must serve as the baseline for comparison when determining if 

yet greater similarity to D+ is produced by installing shrub cluster (SC) or shade shelter (SS) 

modifications, as these different refuges against excessive solar intensity were only applied to areas that 

had received WD in addition to LM. 

4.2.2 VEGETATION RESPONSES IN THE DONOR FOREST (D+) AND NON-TREATED (NT) AREAS 
The pattern indicates that plant communities spontaneously residing in even the earliest successional 
environment investigated share some species in common with D+, but not many. It also shows that the 
degree of similarity to D+ increases with afforestation and time, but not by much: even 75 years after 
tree planting, the composition of understorey vegetation was less than 25% of the high-similarity target 
value. By comparison, the complete similarity to D+ exhibited by S5 indicates that S5 is a suitable 
location for serving its function as reference environment, representative of the D+ conditions but 
protected from future impacts of the quarry expansion.  

4.2.3 CRITICAL PATTERNS 
Results based on data collected in spring 2019 indicate ecosystem translocations may fast-forward 

succession at treated lands when combined with strategic sere matching and after-care. Four critical 

patterns are apparent from both statistical results and compiled example photographs: 

1. Translocating LM to S5 (old growth control site) produced plant communities nearly identical to 

those at D+, suggesting transplant methods had negligible impacts on biodiversity within LM. 

Therefore, differences in vegetation between D+ and other recipient locations are more likely 

due to habitat discrepancies than to the physical disturbances experienced during translocation. 

  

2. Regardless of sere or treatment, every recipient block supported species compositions more 

similar to D+ than to communities in adjacent non-treated areas. This suggests broad utility for 

LM translocations but demands examining the stability of observed patterns and the roles 

played by different species and traits. 
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3. Only some habitat modifications made significant differences, and only at some recipient seres. 

For example, planting translocated LM with dogwood shrub clusters appears to have had no 

influence on the similarity of emergent vegetation to that of D+. Installing woody debris at seres 

S1-S3, by contrast, increased compositional similarity to D+. 

  

4. Erecting shade shelters at S2 significantly increased its similarity to D+, but at S1, this effect was 

marginal.  

Perhaps most importantly, the successional stage of the recipient location had greater influence on 

vegetative community composition than any habitat amendment. Consider that the average similarity 

among D+ samples shows maximum similarity to D+ expected at other locations. Not-treated areas at S2 

featured communities expressing an average similarity score that was 14% of this “high bar” target, 

while at both S3 and S4, the corresponding values approached 20%. Translocating LM to S2 yielded an 

average similarity values that was 40% of the target, increasing to 53% given extra woody debris, and to 

59% beneath shade shelters. Translocating LM to S3 and S4 without further amendments, by contrast, 

produced respective similarity scores 77% and 81% of the target. These differences suggest that 

although translocating LM from mature forests may advance aspects of succession across a range of 

recipient seres, using limited donor resources efficiently may require prioritizing translocations to older 

afforestation sites. Both stronger canopy shading and the relative absence of competitors at mid-

successional plantations likely contributed to the powerful effect of translocating LM to S3 and S4. 

4.2.4 RICHNESS IN LM-RECIPIENT BLOCKS 
Species richness in the LM recipient blocks within S5 was also relatively low (5.6 species per plot), but 
the LM-blocks in S1-S4 all supported high levels of species richness, particularly in +WD areas. The levels 
of species richness supported are surprisingly close to the simple sums of the values for corresponding 
NT areas at each sere plus the 6-7 species per plot observed in the D+ and S5. The respective mean 
richness values for +LM+WD areas in S1-S4 are 16.9, 13.9, 11.6, and 11.7 species per 0.25 m2. While this 
likely oversimplifies the dynamics of the establishing communities, it suggests compositional outcomes 
(so far, at least) are more driven by additive mixing of the different species pools than by environmental 
stressors filtering many species from the realized communities.  

4.2.5 IMMIGRATION FROM HIGH-RICHNESS NOT-TREATED AREAS 
The communities in LM-blocks at S1 and S2 are respectively 43% and 59% comprised of “non-LM” 
species (i.e. residents of the sere) while LM-blocks in S3 and S4 are only 33% and 30% comprised of 
“non-LM” species. It logically follows that the compositional similarity of +LM communities in the later 
stage seres should be higher to D+, as there are fewer “non-D+” species to dilute the established 
mixture.  

4.2.6 AFTERCARE STRATEGIES  
Microhabitat manipulations as well as selection of recipient seres can thus likely influence the structure 
of communities emerging after LM translocation both by promoting some species and by constraining 
others, depending on the context of application. The patterns of community response to our treatments 
identified so far cannot provide any final word on which ecological processes managers should attempt 
to manipulate for greatest success. They do generate crucial predictions, however, for testing through 
continued data collection and further analysis; results of these tests will dictate refined site intervention 
strategies to maximize desired outcomes, and minimize undesirable ones, when implementing 
ecological enhancement programs. 
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4.3 FURTHER BIOLOGICAL AND STATISICAL ANALYSES REQUIRED 
Once the remaining data collected in 2019 can be analysed we will be able to comment on vegetation 

patterns observed and provide a comprehensive suite of soil physio-chemical and biological properties, 

including meta-genomic barcoding of “eDNA” to assess the composition and functioning of soil bacterial, 

fungal and invertebrate communities. We will additionally evaluate an experimental assay of litter 

decomposition rates and pathways, explore thermodynamic indicators of ecosystem stress and 

adaptation, and more. 

5.0 DISCUSSION 
Based on interim results, the potential for ecosystem “transplantation surgery” to accelerate transition 

to later seres within younger woodlands is promising for both extraction sites requiring rehabilitation 

and for existing tree plantations established to mitigate industry impacts. Given the possible transitional 

status of observed patterns, the need to extend analyses to a broader suite of monitored responses, 

intensive effort will be required over the final year of RERAS to assess the full scope of all treatment 

effects. Results from this study will inform best management practices for maximizing translocation 

efficacy under different circumstances facing aggregates producers and other land stewards.  

5.1 SELECTING SERES VS. ALTERING MICROHABITATS  
While modifying microhabitat conditions at LM recipient locations may somewhat increase the power of 
LM to produce plant communities with high similarity to D+, these effects are dwarfed by impacts 
associated with the developmental status of the recipient environment. Put simply, more of the plant 
biodiversity present in forest LM can establish at recipient locations where a semi-closed canopy is 
already present – even if dominant tree types or ground coverage are dissimilar to the LM-donor – than 
at more open locations, such as recent afforestation or extraction sites. The nature of this effect may 
not be so much a case of woodland species preferring the shade, however, as it is a response to much 
higher immigration pressure of aggressive agricultural weeds to the more open sites.  

5.1.1 S1 & S2 RESPONSES 
Even under artificial shade mimicking the donor forest, we discovered that vegetation communities in 
LM-treated areas at S1 and S2 included numerous weed species typical of the surrounding fields, 
limiting the degree to which the plant community could compositionally resemble D+. This limitation will 
intensify if the woodland species are ultimately unable to coexist with the field species (which are 
typically superior competitors until they become limited by low light), emphasizing the need for 
continued monitoring and analysis of the experimental system.  

5.1.2 S3 & S4 RESPONSES 
The prognosis is surprisingly much more positive for the older conifer plantations, S3 and S4. Although 
the mature donor hardwood forest differed strongly from the conifer plantations with respect to canopy 
composition, ground vegetation, litter layer, and soil chemistry, translocation of LM from the former to 
the latter consistently produced spring plant communities with very high similarity to the donor forest 
(i.e. 80-85% of the target level set to represent maximum possible similarity). The plant communities 
that emerged from the deposited LM likely benefited from the relatively low abundance of other 
vegetation in the surroundings. Additionally, resident biodiversity present at S3 & S4 tended to be less 
aggressively invasive than at the earlier successional sites. LM transplants likely benefited from our 
necessary selection of field sites that already had moderate breaks in the canopy and openings at the 
ground-layer (i.e. transitioning from stem exclusion to understorey re-initiation stages of succession).  



 

28 
 

Such gaps were necessary for equipment and personnel access to install the experiment but if LM 
application is ever to be applied at a larger scale, and mature plantations are targeted as recipients, 
managers would likely need to create similar openings to ensure moderate diversity of mixed-light 
environments and heterogeneous ground conditions required by vegetation in old hardwood forests. To 
complement ongoing forest-creation and site-rehabilitation initiatives, managers with access to LM 
resources would be wise to consider the benefits of facilitating programs for enhancing the biodiversity 
and ecological functioning of existing but under-performing forests. This could help maximize industry 
contributions, both to offsetting unavoidable environmental impacts and to combatting other ongoing 
ecological crises including biodiversity loss and climate change. 

5.2 MOVING FORWARD 
With respect to our goals, the current progress of the RERAS research endeavour is on target. Aside 

from the various practical lessons learned while planning, implementing and initiating monitoring of the 

translocation experiment, we are now gaining valuable insight into the dominant ecological processes 

that will likely control the long-term success or failure of different ecosystem translocation strategies. 

The clearest new knowledge has resulted from careful statistical analysis of large datasets. As the plant 

community surveys from spring 2019 are the only data we have analyzed fully, our confidence about the 

ecological patterns is currently restricted to the time period corresponding to ca. 1.5 years post-

translocation of living mulch (and one year after installation of all microhabitat modifications). Despite 

this unavoidable limitation, the analytical approach we developed, and our widened perspective from 

discovering and interpreting the patterns that have emerged so far, provide a very useful template for 

our next iteration of data collection and analysis.  

We will begin comprehensive analysis of the full set of vegetation surveys collected throughout 2019 

over winter 2019-20.  One completed analysis, based on plant community data collected in May-June 

2019, has produced intriguing and optimistic results. Much of the biodiversity inhabiting mature 

hardwood forests such as D+ is associated with spring ephemeral plant communities. These are 

comprised of suites of ground-layer herbaceous species which have evolved to carry out the majority of 

their yearly growth in the brief period between spring thaw and full leafing-out of the forest canopy in 

early summer – a life-history strategy called shade avoidance, rather than shade tolerance. We expect 

such species may have higher tolerance for the earlier-sere recipient environments than do others in the 

LM matrix and therefore be valuable in applications. 

We expect that one more year of monitoring the described spectrum of ecosystem responses, combined 

with our intensifying analysis of collected data, will place us in a strong empirical position to judge the 

short-term effectiveness and longer-term prospects for enhancing afforestation by strategically 

translocating and preserving biodiversity in the uppermost surface layers of old hardwood forests. Our 

fully informed perspective will provide the firmest foundations possible -- i.e. given constraints imposed 

by our current 4-year research window – for recommending both general and specific best management 

practices. The audience to benefit from these recommendations will include aggregate producers but 

also the wider afforestation, ecological restoration, and natural resource management communities. 

The final recommended applications and implications will take the form of a final report to TOARC, but 

also academic papers in both applied and theory-oriented journals, plus media in non-academic 

publications emphasizing resource-management frontiers and innovations. 

If results from our upcoming analyses and 2020 data collection resemble our interim findings, the 

“transplantation surgery for ecosystems” hypothesis – with its principles of donor-recipient site 
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matching, knowing and working within biological limits, and providing stress-reducing after-care by 

reducing microhabitat differences between past and present environments – may have pivotal utility in 

a range of increasingly important land management applications. 

Our final report at the end of 2020 will provide these missing links, but if the observed trends continue, 

the central implication for aggregate resource managers may be that they can maximize the biodiversity 

and habitat co-benefits of both site rehabilitation and offsetting programs. This would require 

comprehensively managing “living mulch” type resources such that fresh supply is available for 

application to strategic locations at strategic time points. This should include existing and planned 

afforestation projects – likely in combination with stand-thinning management – as they near the end of 

the stem-exclusion sere, ca. 30-40 years after stand initiation. 


